If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3v^2+5v+1=0
a = 3; b = 5; c = +1;
Δ = b2-4ac
Δ = 52-4·3·1
Δ = 13
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{13}}{2*3}=\frac{-5-\sqrt{13}}{6} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{13}}{2*3}=\frac{-5+\sqrt{13}}{6} $
| 44=2x-6x | | 6r=8r+10 | | 4t^2-9t+8=0 | | 164=4(-7n-8) | | 3(3x+1)=7x | | -7j+4j=3j | | -85=6-7(x+5) | | 3x-9=7x-5+x | | 6(x-2)=5-4(x-1) | | 9(x+2)^2-3=-152 | | 4=7u=60 | | 2x+4x+18+6x+13=180 | | 8+4(7x-8)=-14 | | 514=x−25 | | 4(4x-2)=1 | | -4(v+9)=-12 | | 4x-3+5x=7 | | -3(-8x-1)-4x=4 | | -7b+7=-105 | | 90x+50=420 | | 2c-5=35 | | -8p-7(5-8p)=-35+6p | | 6x–7=8 | | 8(a-5)=-96 | | 4x+4=6x-14=2x+7 | | -10(r+1)=-20 | | -5(-7x-2)+5x=5 | | x+808=6x+438 | | 3s-16=-46 | | 8x+40-2x=6-3x+31 | | 9^x*9^2=9^15/x | | -6-3(9x-3)=8 |